A Dataflow-Aware Fault Resilience Analysis
Framework for Deep Neural Network Accelerators

I. INTRODUCTION

While the continuous scaling of CMOS technology nodes has led
to improved performance, it has also caused hardware to be more
susceptible to soft errors [3], [6]. Soft errors, which are temporary
errors in hardware caused by radiation or temperature effects [19],
have shown to cause failures in DNNs used in safety critical
applications like autonomous vehicles (AVs) [8]. With more DNNs
running on specialized hardware, it’s been found that the resilience
of DNN computation is dependent on the design of the accelerator
on which inference is being performed [7], [11]. In particular, the
way in which data is moved and reused in an accelerator impacts
how vulnerable certain computations may be to soft errors.

Given this dependency, understanding how the interaction be-
tween the accelerator design and model topology affects the
resilience of a DNN system is critical to deploy them safely. Quantifi-
cation is especially important during the early design phase of such
accelerators due to standards like the ISO 26262 [2], which mandates
maximum failure rates for systems-on-chip used in AVs. Previous
work has shown that transient errors in logic flip-flops alone can
exceed the failure rate budget of an accelerator in such systems [7].

Currently there is no generalizable framework that allows for the
exploration or quantification of the resilience of an accelerator’s
dataflow design. In this work we take an initial step to develop such
a tool for dataflow-aware resilience analysis. We first introduce
the idea of “dataflow error sites” (§III-A) as a way to model
DNN hardware errors in software. To extract such sites, we use
an accelerator’s loop nest representation for its dataflow, which
has not been done in previous resiliency work. Using these novel
methods, we have taken initial steps to create a generalizeable
software pipeline for resilience analysis given high-level design
descriptions of an accelerator’s dataflow (§III-B). Finally, we
describe preliminary results demonstrating the framework’s
capabilities and discuss future directions (§11I-C and §III-D).

II. RELATED WORK & BACKGROUND

Related Work: Previous research has developed methods for
performing hardware-agnostic software injection into DNNs [12],
[13], [17]; however, such methods ignore the hardware dependency
of error propagation. Fldelity [7] aims to address this by developing
an accelerator-aware framework for modeling logic transient errors;
however, they lack support for analyzing the memory hierarchy
design, where most data is stored and reused. In addition, while
Fldelity provides psuedo-code describing their “reuse analysis”,
this forces users to implement the proposed framework themselves,
limiting its productivity. Other studies have performed single case
studies of memory errors in specific accelerator architectures

#-—-- DRAM ----# !
for ml=[0:M1]:
pfor mO=[0:MO] :
for cl=[0:Cl1]:
for gl=[0:Q1]:
for pl=[0:P1]:
————— weight/input buffer -----#
pfor c0=[0:C0]: # parallel
for r1=[0:R]:
for s1=[0:S]:
for g0=[0:Q0]:
for p0=[0:P0]:
PE weight/input regs
r0 = sO = 0 # no tiling in s/r
k = m1*MO0+m0; ¢ = cl1l*CO0+c0; r = rl1*R0O+r0
s = s51*30+s0; p = pl*PO+p0; g = gl*Q0+g0
olm,q,pl += il[c,g+s,p+r] * wim,s, r]

paralleli

Fig. 1. NVDLA [1], [10] loop nest dataflow example. Various sections are
commented, marking points below which all accessed elements are contained in that
memory type. For example, DRAM is shown as being at the top-level loop, meaning
that all the accessed elements for outputs, inputs, and weights will be contained within
DRAM. For the weight/input buffer (or CBUF), it contains all weights for a consecu-
tive M0 weight kernels, as well as an input tile across consecutive C'O input channels.

[4], [11], but they do not supply researchers with a generalizable
framework for analyzing memory error resilience without access
to low-level design descriptions or RTL.

DNN Accelerator Dataflow: DNN accelerators, in general, each
implement a dataflow, which defines how it schedules a layer’s
computations [9], [15]. More specifically, the dataflow defines how
computations are staged spatially across an array of parallel process-
ing units, composed of MAC units and registers. It also specifies
how computations are scheduled temporally, meaning the order in
which the MACs are performed and how data is moved within the
memory hierarchy (e.g., from off-chip DRAM to registers).

While it’s well understood that dataflow has a large effect on
an accelerator’s performance due to different data reuse and MAC
utilization [15], it’s still unclear how the dataflow impacts resilience.
Recent flexible dataflow architectures even allow for different
mappings for the same workload [5], [18], motivating the need to
understand how mapping can affect resilience.

For this work, we focus on CNNs as they are frequently used
in safety critical settings like object detection in AVs. Due to the
“sliding window” property of convolutions, inputs and weights
are used for multiple output neuron computations. Thus, a single
bit-flip can result in large errors at the output, as that one erroneous
value will be reused across multiple output neurons. In order to
categorize and describe an accelerator’s dataflow, we utilize the fact
that the computation of a convolution can be described by a 7-D
loop nest (as illustrated in Fig. 1). The HW mapping of a workload
(i.e., a CNN layer) for a dataflow can be described from a loop nest
that reorders, tiles, and parallelizes the 7-D loop nest. The resulting
altered loop nest models how different pieces of data (i.e., inputs,
weights, and outputs) are reused temporally and spatially.

Accelerator

descrinti " Dataflow Error Software Fault data
escription + fielcen Site Generator Injection (SDC rate)
model topology Loop nest Dataflow (S o
mapping error sites
‘ [l Detafow ervorsites
— . . Extra error sites if
for m=[0:M]: modeled as global error
for c=[0:C]: wlo dataflow analysis
pfor s=[0:5]:] I]
Qutput window

Fig. 2. A simplified block diagram showing key components of the framework. Given
some architecture description and DNN model architecture, Timeloop [15] produces
a loop nest mapping. This mapping is then used by the dataflow error site generator to
produce the dataflow error subset of the output window (shown in red). This can then
be used to isolate errors within the software injection frontend to estimate SDC rates.

III. PROPOSED SOLUTION & PRELIMINARY RESULTS

We propose a generalizable software framework for analyzing
DNN accelerator resilience given dataflow descriptions. We first
discuss our novel insight into modeling dataflow error propogation,
building off of the “reuse factor” proposed by previous work [7]
and tailoring it to memory errors in an accelerator dataflow. We
then describe the implementation and preliminary results.

A. Modeling Dataflow Error Propagation

Because DNN accelerators have well-defined dataflows, it’s
possible to deterministically model how errors propagate through
a memory hierarchy given a loop nest description. If an error occurs
prior to any computation at the highest level of the memory hierarchy
(e.g. DRAM), we call such an error a global error. A global error
will affect the entire output window of that element, meaning all the
output neurons for which that value is used for a partial sum. Pure
software injection frameworks without any dataflow analysis can
model such global errors by injecting into software-visible state.

However, if an error occurs within the memory hierarchy (e.g. in
a buffer or register) during computation, only a subset of the output
window will use that faulty value. For example, if an error occurs in
a memory element after the value has already been used, the output
neurons that used the “clean” value prior to the error will not be
erroneous.

The dataflow and mapping of an architecture, given an error
occurring at some time and location in memory, are what affect
this erroneous subset of output neurons, and we call this subset
dataflow error sites. This means that a memory error in hardware
can be modeled in software by performing a global bit-flip injection
and then only selecting the corresponding erroneous values that
make up the dataflow error sites at the output. The only difference
between two dataflows when modeling errors in software is the size
and shape of this subset.

B. Framework Description

To allow for dataflow-aware error propagation modeling, we
propose a two-stage analysis method as depicted in Fig. 2. The
first step involves a “Dataflow Error Site Generator” backend.
This backend uses an architecture’s loop nest mapping for a given
workload, supplied by Timeloop [15], which can perform this
mapping for any dataflow, allowing for wide generalizability. This
loop nest description allows us to simulate error propagation,
tracking how a value within a memory level (DRAM, buffer, etc.)
is used temporally and spatially within the output window.

049 f--~ +
' W\ Accuracy

2 048 . w/o errors

©

e

S 047

o

o}

< 046

iy .

a 045 DRAM errors

.9 more costly edeases'ses e Convl

< 04 (\e\)”e A det‘ea Conv2

g i3 C(g&e e Conv3

© e Conv4

042 .

DRAM CBUF
Memory Level (larger - smaller)

MAC Input Register

Fig. 3. Top-1 Accuracy in Alexnet-ImageNet as a result of modeled memory
errors in input activations using our framework. The targeted accelerator is NVDLA
[1] using the loop nest shown in Fig. 1. We find that as reuse decreases down the
memory hierarchy (from DRAM to CBUF to regs), the SDC rate also decreases
drastically. Moreover, the layer in which the injection occurs has a major impact.

The second step involves a “Software Injection Frontend” which
takes the dataflow error sites generated from the backend to isolate
those sites in software, providing accurate hardware error modeling
in the software visible output activations. This frontend uses
PyTorch [16] to propagate a layer’s errors to the final model output.
The final output can then be used to collect failure data such as
silent data corruptions (SDCs), which are errors at the final output,
such as image misclassification. This output data are also useful
for validation purposes (§III-D).

C. Preliminary Results

Fig. 3 shows preliminary results using an early-stage
implementation of the framework. We use the loop nest for
NVDLA [1] as shown in Fig. 1 to model hardware errors in the
input activations for different memory levels. We used Alexnet as
the model topology, performing injections in convolutional layers
(ignoring layers with non-unit stride due to limitations in the current
framework). We used a random set of 100 images from ImageNet’s
validation set and randomly sampled input locations to inject an
error. Values are represented in FP32, and errors are modeled as
a flip of the fifth bit, as bit location randomization has not yet been
implemented. Future work will do a thorough analysis on different
representations and bit locations.

The short case study enabled by the framework already reveals
that reuse has a large effect on resilience, with errors occurring in
DRAM, the highest memory level, decreasing the accuracy by as
much as 6x as compared to errors in buffer or register elements.
This gives accelerator designers an idea of locations in the memory
hierarchy that are particularly vulnerable. We plan to do further case
studies comparing the resilience of various accelerator dataflows
to characterize how the dataflow impacts resilience and to explore
tradeoffs between energy, accuracy, and resiliency.

D. Validation

To be true to hardware, the dataflow error sites that the backend
produces need to be validated. We’ve already used the reported
error models for NVDLA [1] from Fldelity [7] and compared
them with the dataflow error sites produced by our framework,
and found that they exactly match, which is promising considering
Fldelity validated their work with RTL injections. Future validation
will compare results to fault injections performed on either a
cycle-accurate accelerator simulator, like STONNE [14], or RTL
for simple dataflow accelerator designs.

(1
[2]
3]

4

flnar

[5]

[6

=

[7

—

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

“NVIDIA Deep Learning Accelerator.” [Online]. Available: http://nvdla.org/
“ISO 26262,” Sep. 2021, page Version ID: 1046300685.

R. Baumann, “Soft errors in advanced computer systems,” IEEE Design Test
of Computers, vol. 22, no. 3, pp. 258-266, May 2005, conference Name: IEEE
Design Test of Computers.

N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri, S. Eldridge,
R. V. Joshi, M. M. Ziegler, A. Buyuktosunoglu, and P. Bose, “Resilient Low
Voltage Accelerators for High Energy Efficiency,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb. 2019,
pp. 147-158, iSSN: 2378-203X.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,” [EEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2,
pp- 292-308, Jun. 2019, conference Name: IEEE Journal on Emerging and
Selected Topics in Circuits and Systems.

A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in 2011 International Reliability Physics Symposium, Apr. 2011, pp.
5B.4.1-5B.4.7, iSSN: 1938-1891.

Y. He, P. Balaprakash, and Y. Li, “FIdelity: Efficient Resilience Analysis Frame-
work for Deep Learning Accelerators,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), Oct. 2020, pp. 270-281.
S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer, “AVFI:
48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, DSN-W 2018, Proceedings - 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops,
DSN-W 2018, pp. 55-56, Jul. 2018, publisher: Institute of Electrical and
Electronics Engineers Inc.

H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding Reuse, Performance, and Hardware Cost of DNN Dataflow:
A Data-Centric Approach,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New York,
NY, USA: Association for Computing Machinery, Oct. 2019, pp. 754-768.
[Online]. Available: https://doi.org/10.1145/3352460.3358252

H. Kwon, L. Lai, M. Pellaver, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous Dataflow Accelerators for Multi-DNN Workloads,” in 2021
IEEE International Symposium on High-Performance Computer Architecture
(HPCA), Feb. 2021, pp. 71-83, iSSN: 2378-203X.

G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.
Keckler, “Understanding error propagation in deep learning neural network
(DNN) accelerators and applications,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
ser. SC’17. New York, NY, USA: Association for Computing Machinery, Nov.
2017, pp. 1-12. [Online]. Available: https://doi.org/10.1145/3126908.3126964
G. Li, K. Pattabiraman, and N. DeBardeleben, “TensorFI: A Configurable
Fault Injector for TensorFlow Applications,” in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), Oct.
2018, pp. 313-320.

A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, 1. Frosio, and S. K. S. Hari, “PyTorchFI: A Runtime Perturbation
Tool for DNNs,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), Jun. 2020, pp.
25-31, iSSN: 2325-6664.

F. Muiioz-Martinez, J. L. Abellan, M. E. Acacio, and T. Krishna, “STONNE:
Enabling Cycle-Level Microarchitectural Simulation for DNN Inference
Accelerators,” IEEE Computer Architecture Letters, vol. 20, no. 2, pp. 122-125,
Jul. 2021, conference Name: IEEE Computer Architecture Letters.

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), Mar. 2019, pp. 304-315.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” in Advances in Neural Information Processing Systems, vol. 32.
Curran Associates, Inc., 2019.

B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland,
D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying the resilience
of deep neural networks,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), Jun. 2018, pp. 1-6.

[18]

[19]

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J.
Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler, “Simba: Scaling
Deep-Learning Inference with Multi-Chip-Module-Based Architecture,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52. New York, NY, USA: Association
for Computing Machinery, Oct. 2019, pp. 14-27. [Online]. Available:
https://doi.org/10.1145/3352460.3358302

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus,
N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari,
A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty,
S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensbergen,
“Addressing failures in exascale computing,” The International Journal of
High Performance Computing Applications, vol. 28, no. 2, pp. 129-173, 2014.
[Online]. Available: https://doi.org/10.1177/1094342014522573

