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ABSTRACT
The increasing carbon emissions from cloud computing re-
quires new methods to reduce its environmental impact. We
explore extending data center server lifetimes to reduce em-
bodied carbon emissions (from hardware manufacturing),
rather than operational (from running hardware). Our ex-
periments are the first to analyze a data center application’s
end-to-end performance on different server generations, to
reveal that older hardware can preserve performance in cer-
tain conditions (e.g., low load).

Our observations show the need for a carbon-aware data
center scheduler that schedules on older hardware when
suitable. However, quantifying such a scheduler’s carbon
savings is challenging today due to the lack of practical car-
bon measurement metrics/tools. We identify gaps in current
methods for measuring operational and embodied carbon
and call upon the broader systems research community to
take action and conduct research that can pave the way for
future carbon footprint analysis in systems.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing; • Applied computing→ Data centers; • Social and
professional topics→ Sustainability.
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1 INTRODUCTION
Scientists have made it clear that anthropogenic climate
change is one of the greatest threats to both global health
and the planet’s ecosystem [1, 4]. To mitigate climate change,
systems researchers have a particular role to play, as re-
cent studies estimate that 2% of global emissions are due
to Information and Communication Technology (ICT) [24].
Critically, projections show that ICT could constitute 20%
of anthropogenic emissions by 2030, with much of the in-
crease attributable to an increased demand for cloud com-
puting [22].
Previous research has focused on reducing operational

carbon emissions in data centers, which are the emissions
produced to power the data center. This focus on reducing
operational emissions builds upon the extensive work in
making data centersmore energy and resource efficient [8, 14,
32] and managing data center power consumption [35, 38].

Operational emissions, however, are only one part of the
story. Prior work has shown that up to 50% of data center
emissions are “embodied,” which result from hardware man-
ufacturing and transport [19]. The fraction of emissions that
are embodied will likely grow further, with cloud providers
pledging to invest more in renewables [15, 28, 29].
In a step towards reducing data center emissions, we ex-

plore understanding how older hardware can be reused in
a cloud setting while preserving end-to-end service perfor-
mance. We analyze the performance impact when running a
web service composed of microservices [13] on older server
generations. Our results reveal operating conditions where
older hardware can maintain service performance compared
to running entirely on newer servers. For example, we ob-
serve that older hardware can achieve comparable tail laten-
cies as newer hardware under low load conditions.
Our results reveal the need to schedule services while

considering tradeoffs between embodied and operational
characteristics of hardware generations. Upon considering
these tradeoffs, however, we identify many challenges in
measuring carbon emission reductions achieved by carbon-
aware systems optimizations, such as carbon-aware schedul-
ing. Operational emissions’ complexity arises from handling
the variability of a data center’s “carbon intensity,” (i.e., emis-
sions per unit energy consumed). With embodied emissions,
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Intel AMD

Xeon E5-2660 v2 Xeon E5-2660 v3 EPYC 7542 EPYC 7543

Microarchitecture Ivy Bridge (2012) Haswell (2013) Rome (2019) Milan (2021)
Cores/Threads 10/20 10/20 32/64 32/64
Node 22 nm 22 nm 7 nm 7 nm
Base/Turbo (GHz) 2.2 / 3 2.6 / 3.3 2.9 / 3.4 2.8 / 3.7
LLC Cache Size 25 MB 25 MB 128 MB 256 MB
TDP (W) 95 105 225 225
RAM (DDR4) 256GB (1.6 GHz) 160GB (2.133 GHz) 256GB (3.2 GHz) 512GB (3.2 GHz)
Disk (SATA) 2 TB HDD 480 GB SSD 1.6 TB SSD 2 TB SSD
NIC 10Gb (PCIe v3) 10 Gb (PCIe v3) 25 Gb (PCIe v4.0) 25 Gb (PCIe v4.0)

Table 1: Attributes of the two generations (old on the
left, new on the right) of Intel & AMD servers we study.

the main challenge is the lack of well-defined metrics or
proxies, which makes it difficult to compare system designs.
Systems researchers must be able to analyze their

designs’ impact on carbon emissions. We take a step
towards defining the challenges in enabling such analyses.

Our contributions are:
• Performing the first experiments to analyze a data cen-
ter service’s performance across server generations.

• Identifying conditions where older hardware does not
increase tail latency, potentially allowing server life-
times to be extended and reducing embodied carbon.

• Enumerating existingmethods tomeasure carbon emis-
sions and why they fall short in easily quantifying
operational and embodied carbon costs of a systems
decision, and suggesting ways to move forward.

In the rest of this paper, we discuss our initial results for
extending data center server lifetimes (§2). We then describe
the unique lessons and challenges we identify, and how they
broadly apply, in handling operational (§3) and embodied
(§4) carbon. Finally, we outline future areas of research that
can pave the way for sustainable systems research (§5).

2 TOWARDS LONGER SERVER LIFETIMES
Previous research has proposed that extending server life-
times could be effective to reduce data centers’ carbon foot-
print by minimizing the embodied carbon caused by upgrad-
ing servers [18, 34, 37]. A key challenge in extending life-
times is handling the added heterogeneity of having different
server generations which have unique performance traits.
Hence, to use servers for longer, we must determine the per-
formance impact of running latency-sensitive web services
(built using microservices) on different server generations.

Next, we explain how we study the performance impact
of running web services on different server generations, our
insights, and the challenges we face with quantifying the
carbon savings produced by our proposed optimization.
A. Experimental setup
We compare a microservice-based application’s perfor-

mance on two AMD and Intel server generations. The servers

Figure 1: Tail (99th%) latency across load conditions (in
QPS) for older and newer Intel and AMD server SKUs.
Older servers satisfy the SLO at low load conditions.

of each type, i.e., Intel or AMD, are of the same SKU and only
differ by their generation. The servers are located in Cloud-
Lab data centers [11]. Their characteristics are summarized
in Table 1.
We study DeathStarBench’s Social Network applica-

tion [13], which allows users to create posts with text and
images that are processed. This functionality is implemented
as thirty core microservices that communicate with each
other through Apache Thrift Remote Procedure Calls [31].
We set up our infrastructure in a way that allows us to

evenly distribute the thirtymicroservices in Social Network
across the number of nodes under test, pin each microser-
vice to a single socket, and keep microservice placements
constant. In a given server, we also constrain each microser-
vice to the same amount of RAM. For all experiments, we
use an open-loop load generator and sweep across low to
high load conditions (measured in Queries Per Second) un-
til a saturation throughput is reached, while recording tail
latencies.

B. End-to-end service analysis across server generations
We first study how an end-to-end service behaves on dif-

ferent server generations. We distribute Social Network’s
thirty microservices across fifteen nodes of the same server
type (i.e., same SKU and generation).

Fig. 1 shows the resulting plot of latency against Queries
Per Second (QPS). Latency above the gray dotted line cannot
meaningfully be measured as the system is under saturation,
where queuing delays grow unbounded. The red dotted line
shows a performance-guided Service Level Objective (SLO)
target taken as the latency achieved at 75% of the saturation
load for the best performing server (“New AMD”).
Our results show that at certain lower load conditions,

both of the older servers can still achieve the performance
SLO (often within a latency margin of 2–3 milliseconds).
This result indicates that upgrading and using newer server

2



Figure 2: Impact on service tail (99th%) latency upon
placing a certain microservice on older hardware. Cer-
tain microservices are more (e.g.,media-service) or less
(e.g., user-timeline-service) tolerant to older hardware.

generations to serve lower load conditions is a carbon ineffi-
ciency, as older servers can still achieve SLO targets. Hence,
it is worthwhile to explore if scheduling services on older
hardware under lower loads can save embodied carbon emis-
sions.
C. Microservice-based analysis across server generations
While Fig. 1 provides insights on the end-to-end service’s
performance tolerance when running on older hardware,
it does not provide information on specific microservices’
performance tolerance. Studying fine-grained microservice-
level placement strategies that minimize performance impact
might reveal further carbon optimization opportunities. To
this end, we conduct a set of experiments where all microser-
vices are initially placed on a set of fifteen newer servers
under the same experimental setup as in §2. We then place
one microservice on an older server, while keeping all other
microservices on the newer nodes. We perform a QPS sweep
and repeat for each of the thirty microservices. We report
our results on only the two generations of AMD nodes for
brevity.
In Fig. 2, we show the results for a set of representative

microservices (those on the same call path are colored the
same). Other microservices show similar trends; we omit
them for brevity. “All New” shows latencies when running
all microservices on newer AMD nodes, while other markers
show latencies when that named microservice is the one
scheduled on an older AMD node. We can see the effect on
end-to-end service latency when a certain microservice is
run on older hardware by comparing the latency to the “All
New” latency.

We find that certain microservices, such as user-timeline-
service, are less tolerant to being scheduled on older servers
as they show consistently higher latencies than “All New”.
On the other hand, microservices such as media-service are
more tolerant. A benefit of the microservice model is that

individual components of a service can be optimized indepen-
dently. While this benefit is often exploited for performance,
the imbalance in microservices’ tolerances to being placed
on older servers suggests that individual microservices can
be optimally scheduled to improve carbon efficiency.
D. Evaluating the solution
Driven by our study’s insights, we aim to design carbon-

efficient scheduling systems that can run performance-tolerant
microservices on older hardware. To achieve this goal, we
must turn qualitative intuitions about lifetime extension
strategies into quantifiablemetrics to evaluate carbon-efficiency.
However, to quantify carbon-efficiency, we must answer two
questions that each have their own challenges and potential
solutions. The first question we address (§3) is: How can we
monitor and quantify a data center system’s (e.g., a carbon-
efficient scheduling system’s) operational carbon emissions?
The second, and the one we have found more challenging to
handle, is: How can we model and analyze a data center sys-
tem’s embodied carbon emissions in a way that is practical
and accurate (§4)?

3 MEASURING OPERATIONAL CARBON
When identifying ways to quantify the differences in opera-
tional emissions for different server generations, we found
useful existing approaches to enable this quantification as
well as some deficiencies that we will detail.
A. How it’s been done

Just as the Iron Law of processor performance uses three
components to measure performance, we can quantify two
components to measure an application’s operational foot-
print over a time period: energy consumed and carbon inten-
sity [18, 20]. Energy consumed can be measured in kilowatt-
hours (kWh) or Joules/watt-seconds (Ws). The energy source’s
“carbon intensity” describes the carbon emissions produced
by the energy source(s) used by the application, which is
measured in grams or kilograms of carbon dioxide per unit
of energy (e.g., g CO2 per kWh). Measuring the first compo-
nent of energy consumption is often relatively easy, given
existing techniques/tools for data center- and hardware-level
power monitoring and modeling [5, 21, 23, 27, 38].
The second component, carbon intensity, is more chal-

lenging to determine, as it depends on the time, location, and
even data center operators’ future renewable commitments.
Prior work deals with these dependencies by making the
carbon intensity a variable and then varying the intensities
based on a system’s operating conditions [2, 18]. Varying
the carbon intensity provides insights into (1) how an opti-
mization behaves in diverse data center scenarios (e.g., more
or less renewables) and (2) how varying the carbon intensity
changes the optimal decision to reduce emissions. Unless the
carbon intensity remains constant over the system’s lifetime,
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treating it as a variable allows optimizations to evolve as the
surrounding energy infrastructure inevitably changes.

B. What’s in it for us?
To achieve our hardware lifetime extension goals, we must

measure different server generations’ operational emissions.
We can measure our service’s energy consumption via tools
like RAPL [10], which record per-socket CPU and memory
power measurements. We can even distribute microservices
across sockets and use RAPL to determine per-microservice
energy efficiency across server generations.

To deal with carbon intensity, we can use the stated vari-
able method [2, 18], allowing our carbon-efficient scheduler
to be deployed across long time scales and geographical re-
gions. For example, when/where the carbon intensity is high,
the scheduler should favor servers that optimize for energy-
efficiency. In contrast, when/where carbon intensity is low,
the scheduler should favor servers that are potentially less
energy efficient but older, extending their possible lifetime.

C. Broader challenges with operational emissions
Operational carbon is easier to think about as the energy

consumption component is directly related to resource effi-
ciency, which is well-studied [9, 25, 35]. This direct relation-
ship implies that energy and latency optimizations will result
in operational reductions. However, systems researchers will
still face challenges when handling operational emissions.
Handling variable carbon intensities. Often carbon

intensity necessitates changing a system’s optimization even
if the workload and hardware is constant. This variability
must be accounted for in two cases, to find an optimal design
point that minimizes a system’s net carbon footprint.

First, if the optimization operates in an environmentwhere
the carbon intensity varies over similar timescales as an ap-
plication execution, it could complicate a system’s decision-
making. Often, temporal variability involves predicting how
the carbon intensity will change in the future to schedule
applications for future carbon intensity changes [2].
Second, if the application or system operates across geo-

graphical regions, then carbon intensity variations due to
different grid sources must be considered, thereby affecting
decisions on where to schedule applications and what opti-
mizations are optimal in one region vs. another. If, however,
the optimization does not face these two scenarios, then
carbon intensity acts as a constant for energy consumption.
Further, if the embodied carbon in such an optimization is
constant (e.g., running an application on a single server con-
figuration), then a holistic carbon optimization simply has
to minimize the application’s total energy consumption.
Exposing to cloud users. Since it is often possible to

measure the two components of operational emissions at
any period of time, we can expose operational emissions to
users. Hence, large cloud providers use energy sourcing and

application-level power monitoring information to expose
operational emissions to users [16, 30]. However, the right
way to apportion the energy consumption of virtualized
resources such as memory and disk is still unclear. Even if
users have this knowledge, identifying the right tools and
APIs to give to users is an open area of research [33].

4 MODELING EMBODIED CARBON
Unlike a system’s operational carbon, which can often be
measured, it is unclear how or if the embodied carbon can be
directly measured.We discuss current measurementmethods
and challenges that previous solutions have not yet solved.

A. How it’s been done
Prior work on data center carbon optimizations create

simple models for embodied carbon [7, 18]. Some models
compare design choices by considering a lifetime, such as
three to four years, in which all hardware components can
reasonably remain functional. Such models allow us to ac-
count for the single purchase of hardware required to run
over a given time period [7]. This accounting uses published
energy consumption values for manufacturing these com-
ponents. The embodied modeling then accounts for the dif-
ferent designs that require differing types and amounts of
hardware to support a service.
ACT considers services that run on a single processor,

such as a machine learning inference [18]. To account for
embodied carbon, ACT uses a simple model in which a ser-
vice’s embodied emissions are modeled as 𝑇

𝐿
𝐸𝐶𝐹 where 𝑇 is

the service runtime, 𝐿 is the estimated device lifetime, and
𝐸𝐶𝐹 is the estimated emissions from manufacturing the de-
vice. Similar to the previous approach [7], ACT assumes a
constant lifetime for diverse devices (e.g., three years for
servers and two years for mobile devices). Then, the embod-
ied carbon footprint of the different devices are counted once
for the lifetime while also weighing the service run time.

B. What’s in it for us?
Since our carbon-aware scheduler must consider lifetime

extensions, where a key carbon saving comes from mini-
mizing server upgrades, and therefore manufacturing, the
previous modeling approaches [7, 18] of considering a single
lifetime period do not cover our system’s timescales. This
drawback is because prior research [7, 18] does not focus
on lifetime extension, but on considering the carbon and
performance tradeoffs between two devices.

Furthermore, as in the ACT model [18], there are inherent
issues with including the latency in the embodied component
when measuring carbon footprint. This latency discounting
treats a device’s lifetime as expendable and fungible, and
therefore provisions the embodied emissions over its lifetime
according to the time spent on a service.
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One issue with the ACT model [18] is that it assumes
that a device is running at 100% utilization throughout its
lifetime. This assumption could be valid for a device that
handles fixed-size workloads, but might not apply for typical
data center services as these services rarely involve fixed-
size operations. Another issue is that using average latency
as a weight on the embodied emissions does not fit well for
distributedweb services. Modernweb services are not always
provisioned to achieve a certain average latency over their
requests, but are more concerned with tail-latency effects.
Hence, web systems are provisioned to provide acceptable
latencies for worst-case loads. This assumption also does not
account for cases where lifetime depends on the optimization
itself and is hence not known a priori, as with our proposed
carbon-efficient scheduling system.

For our scheduling system, existing embodied carbonmod-
eling methods do not answer a key question: How can we
measure the carbon emissions of a scheduling system that
better accounts for server heterogeneity? Under certain op-
erating conditions, such a scheduler will allow older gen-
erations to remain in a data center longer while achieving
similar performance to a data center with the latest servers.
To determine the carbon savings of such a scheduler, we
require a baseline implementation of a data center scheduler.
This baseline can then be compared against to determine car-
bon emissions avoided by using our carbon-aware scheduler.
Possible baselines are schedulers that are unaware of perfor-
mance heterogeneity and hence make naïve placements that
can cause older hardware to be unused in cases where they
might be useful, precipitating premature server upgrades.

C. Broader challenges with embodied emissions
Reasoning about the challenges that we must consider

when measuring embodied carbon for our carbon-aware
scheduler has helped us identify why measuring embodied
emissions is challenging for any new system design opti-
mization.

Embodied emissions are not continuous. First, unlike
a service’s operational footprint, it is unclear what a service’s
embodied emissions are over its typical runtime. While the
two components of operational emissions are continuous
functions, embodied emissions are an outcome of manufac-
turing, which is a result of discrete instances of procuring
hardware. The timescales of typical service runtimes and of
making system-level decisions, such as scaling up or scaling
out, are typically not long enough (on the order of seconds
to days) to capture general trends of server upgrade and
procurement cycles (on the order of months to years). Hence,
monitoring the embodied emissions of purchased servers in a
data center would not be representative of changes in the em-
bodied emissions during a service’s runtime or a scheduler’s
policy decision.

Apple Mac Pro HPE ProLiant DL360 Dell R740

Assumed lifetime (years) “3 or 4” 4 4

Assumed utilization Undisclosed 30% load, 100% of time

100% load, 10% of time
50% load, 35% of time
10% load, 30% of time,
Idle mode, 25% of time

Assumed location Undisclosed EU US and EU

CPU(s) Used 1x M1 1x (Undisclosed) 2x Intel Xeon

SSD 256 GB Undisclosed 8x 3.84 TB

IC Breakdown No No Yes

Table 2: LCA differences across server vendors.

Embodied metrics are not well-defined. Unlike opera-
tional emissions which have two clear metrics to optimize,
there is no consensus on what metrics to optimize for to
minimize embodied emissions. One option is to track em-
bodied footprint as a running average of emissions caused
by continuous purchasing as a result of needing additional
hardware, where the window that is averaged over is long
enough to capture hardware refresh cycles. This rate method
is useful when making “run-time” decisions, where steeper
embodied emission rates can be detected. Detection could
then trigger a mitigation strategy, such as changing a sched-
uling decision to shift to existing hardware and to shift the
tradeoffs more towards saving embodied rather than perfor-
mance or throughput. Another approach to minimize the to-
tal embodied carbon is to instead constrain the optimization
time-period to one where discrete decisions can be modeled.
LCA standards are lacking. Ultimately, any approach

that tracks embodied emissions relies on accurate estima-
tions of emissions generated by manufacturing hardware. Of
late, companies have released lifecycle assessments (LCAs)
on server-class and commodity products [3, 6, 12]. However,
as shown in Table 2, each company has its own standards,
which makes mixing LCAs difficult. In addition, companies
are not required to release LCAs for all products, making it
difficult to find details for more bleeding-edge components
that systems designers often use.
“Embodied proxies” are not well-defined. Standard-

ized LCAs could take years to come to fruition, so we must
focus on defining easily quantifiable metrics that can serve as
proxies for embodied carbon. Such proxies could include (1)
a server fleet’s average age, (2) a service’s compute, memory,
and bandwidth requirements, and (3) a server fleet’s mass.
Each proxy would have its own tradeoffs in terms of ease of
measurement, accuracy, and granularity.

For example, a server fleet’s average age is simple to mea-
sure given the dates of when servers were manufactured.
Age accounts for a device’s original embodied emissions be-
ing amortized over its lifetime, allowing it to follow general
trends of a system’s embodied emissions. However, the age
only operates at the granularity of a group of servers, and
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would hence not account for embodied carbon differences
of individual servers.

Ultimately, a good proxy should incentivize system design-
ers and cloud companies to promote lowered carbon, even if
the proxy itself does not exactly match carbon emissions.

5 FUTURE AREAS OF WORK
We discuss future directions for both carbon optimizations
and improving system carbon measurement.
Reliability. Further research is needed to quantify how

system reliability, across the stack, can lead to carbon emis-
sions reductions. For example, increased reliability at the
distributed systems level can lead to improved uptime, which
can reduce overprovisioning for handling outages. Similarly,
increased hardware reliability can further extend lifetimes
and reduce embodied emissions. These examples reveal the
need for techniques that can lead to drastic reliability im-
provements in systems.
Disaggregation/pooling. Recent research has shown

that pooling can lead to quantifiable reductions in hard-
ware [17, 26]. Future optimizations in this area are promising,
as they reduce both operational (by minimizing resource uti-
lization) and embodied (by reducing the required hardware
resources to achieve good performance) emissions.
Characterization of performance trends. Further in-

sights into performance trends are needed to understand
how systems should adapt to be carbon efficient. For exam-
ple, software optimizations like kernel bypass [39] could
further emphasize hardware performance differences across
generations. Such optimizations could make it more ben-
eficial to exploit cases where older hardware outperforms
newer ones.

Transparent embodied carbon in public clouds.More
exposure of embodied carbon and incentives to reduce em-
bodied emissions for public cloud users could lead to further
carbon reductions. Such rewards could be in the form of (1)
price incentives for using older generations of hardware and
(2) cloud providers exposing helpful carbon proxies.

Other embodied concerns. There are other environmen-
tal concerns that are not captured by modeling carbon emis-
sions. These concerns include raw material consumption
and hardware waste [36]. Determining how these concerns
should be factored into systems design is an open question.

The time is now.We believe that given prompt action, we
can lay the necessary groundwork for sustainability research
to come, to allow continuous growth in computational power
and further global access to critical web services.
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