
EcoScale: Giving Old Servers New Life at
Hyperscale

Jaylen Wang*1, Zhiyang Pan*1, Udit Gupta2, Akshitha Sriraman1
1Carnegie Mellon University, 2Cornell University

I. MOTIVATION

To reduce emissions at hyperscale, previous work has
proposed reusing older servers [1]–[3], instead of continuing
to upgrade servers every 3-6 years [4]. However, upgrading
servers typically improves performance and energy, which
drive server upgrades today [2], [5], especially to support
latency-sensitive data center services. Thus, it is critical to
extend server lifetimes in a way that achieves latency-sensitive
services’ performance and energy goals.

II. KEY INSIGHTS AND CONTRIBUTIONS

Key Insights. Our key insight is to extend server life-
times while avoiding performance loss by exploiting the trend
of building services using numerous, distributed microser-
vices [6]. Microservices enable optimizing service components
independently [7]. We leverage this benefit to reuse older
servers by running latency-tolerant microservices on them.

While previous scheduling systems have considered re-
source provisioning for microservices on homogeneous hard-
ware [8], [9], they don’t factor in the extra dimension of carbon
emissions introduced by different generations of servers. Thus,
to leverage this insight, we address two challenges. First, we
must determine which microservices to run on older servers
and under which operating conditions (e.g., at what loads).
Second, existing systems do not consider the emissions vs.
performance implications of running microservices on older
servers when faced with diverse run-time conditions, e.g.,
variations in load and carbon intensity, which is the amount of
carbon emissions generated per unit of energy consumed [10].

Contributions. To address these challenges, we develop a
methodology and associated framework, EcoScale, that runs
latency-sensitive services on older servers to reduce emissions
without performance losses. EcoScale uses a new carbon-
aware cost function that rewards running more microservices
on older servers, while ensuring the service meets its perfor-
mance goals without greatly increasing operational emissions.

EcoScale assumes a service can run on a set of older, i.e.,
deployed past their expected lifetime, and newer servers to pro-
file performance. To account for carbon, EcoScale calculates
Cnew and Cold, the rate of carbon emitted by older and newer
servers, respectively. We then define a constant “C”, where
C = Cnew/Cold, representing the number of older servers
that emit carbon at the same rate as a single newer server.

Given C, our key observation is that scheduling policies
can save carbon any time a microservice can be placed on
≤ C older servers instead of a newer server. We define the

*Both authors contributed equally to this work.

Fig. 1. EcoScale’s high-level system design.

scaling policy as the number of older servers to scale out
to, through multiple replicas of the same microservice. Thus,
EcoScale’s high-level goal of reducing emissions transforms
into finding a microservice scheduling and scaling policy,
the “carbon-saving plan”, that replaces newer servers with
the minimum number of older servers, up to C×, while
maintaining performance Service Level Objectives (SLOs).

III. ECOSCALE

We briefly discuss the two phases, offline profiling and run-
time scheduling, of EcoScale’s design as shown in Fig. 1.

Offline profiling phase. We describe the two main steps of
offline profiling. We refer to the numbers in Fig. 1 (e.g., 1).

Criticality search. EcoScale first identifies microservices
that can run on one older server while maintaining perfor-
mance. We call such microservices “non-critical”. EcoScale
first sweeps from low to high service loads on a cluster
where all the servers are newer, i.e. “All New” (1). This step
identifies the performance SLO that must be achieved.

EcoScale prunes the non-critical search space by eliminating
microservices that can be run on older servers, by analyzing
per-microservice latencies recorded from the homogeneous
sweep on all older servers (2). To identify such performance-
insensitive microservices, EcoScale notes microservices that
exhibit minimal latency increases at peak load conditions.
EcoScale forms the “criticality ranking” (3) by assessing how
much placing each microservice on older servers increases
service tail latency compared to the “All New” scenario.

EcoScale then performs a “greedy search” to find the
minimum number of newer servers needed to meet the SLO
without scaling out any microservice (4). EcoScale begins
by placing all microservices on older servers, then iteratively
moves the next most critical microservice onto newer servers
based on the ranking until the SLO is met. Here, we note the
resulting microservice scheduling policy as “NoScale”.

Carbon-aware scaling. With NoScale identified, EcoScale
searches for policies that place critical microservices on

2

Fig. 2. (a) A subset of per-microservice tail latencies for an “AllOld”
configuration at an input load of 3000 and 3500 QPS. Most microservices
(those in gray) are not impacted by greater QPS, except for Compose Post
and Write User Timeline; (b) Load vs. tail latency when placing the named
microservice on an older server, with the rest of the microservices running
on new. “AllOld” runs all microservices on older servers. Latency increases
compared to “AllNew“ indicate microservice performance sensitivity.

multiple older servers, by scaling out to up to C replicas,
instead of on newer servers (5). To perform this search,
EcoScale first moves the lowest ranked performance-critical
microservice from a newer to an older server and runs it on
two older servers, where the second server is a replica of
the first. EcoScale then increases the number of replicas until
one of two conditions occurs. First, if there are already C
replicas, then more replicas would lead to increased emissions.
Second, if the plan satisfies the SLO at all load conditions, then
EcoScale has identified the minimum number of necessary
replicas. In the second case, EcoScale then repeats the process,
except it moves the two lowest ranked microservices, and so
on. The resulting scheduling policy is the most carbon-efficient
within the search, and we call that “NewMin”.

Run-time phase. At run time, EcoScale evaluates the
microservice scheduling and scaling policies in terms of
meeting the SLO and reducing emissions. EcoScale employs
a piece-wise linear model relating a policy’s run-time load
thresholds with scheduling operations. To obtain the run-time
loads, EcoScale employs an event-based load detector that
monitors and estimates the Queries Per Second (QPS) using
a circular buffer in accordance with previous work [6]. Once
load thresholds are met, EcoScale performs the corresponding
scaling operation. Finally, EcoScale periodically examines the
tail latency to determine if the SLO was met in the last period.

IV. KEY RESULTS

We evaluate EcoScale’s ability to maintain SLOs and re-
duce emissions by comparing the performance of DeathStar-
Bench’s [7] Social Network application on two genera-
tions of Intel servers, one with an older Ivy Bridge and the
other with a newer Skylake processor with similar amounts
of DRAM and disk. To evaluate EcoScale’s run-time capa-
bility, we use two production-level diurnal load traces from
Google [11] and Wikipedia [12]. We overlay the workload
traces with a trace of California’s grid intensity during the
first day of the year in 2023 [13].

To measure Cold and Cnew for each microservice, we
use Intel’s Running Average Power Limit (RAPL) energy-
reporting interface [14]. Multiplying the power by the trace’s
carbon intensity provides the operational emissions. As in
previous work [1], we treat our older server as operating in its

Fig. 3. Online metrics for the Google workload trace reported over time. (a)
The input load (from a workload trace), and the detected load by EcoScale.
(b) The carbon intensity trace over time matched in time with the load
trace. (c) Tail latencies over time for four configurations; note how the
“AllOld” condition only achieves the SLO at low loads, and placing a single
microservice on a new server with scaling can achieve the SLO across loads.
(d)Estimated carbon savings over time for the same configurations.

second life, and thus having zero embodied emissions. To cal-
culate our newer server’s embodied emissions, we use ACT’s
carbon modeling [3] along with the server’s specifications (i.e.,
CPU and DRAM capacities) to estimate 432 kg CO2e per
newer server. These calculations result in C = 3.

We now evaluate EcoScale in terms of maintaining SLO
and the end-to-end carbon savings it achieves.

Evaluating the offline profiling phase. We record the
end-to-end 99th% tail latencies for Social Network while
sweeping from low to high input loads, when one microservice
is placed on an older server while the rest are placed on a
newer server. Fig. 2(a) shows the results for each microservice.

When run on an older server, most microservices (e.g.,
“Store Post”), result in < 5% end-to-end peak saturation
throughput loss. Some microservices, however, such as “User
Timeline”, cause a high (∼17%) loss, indicating criticality.

To evaluate our pruning method, we record per-microservice
99th% tail latencies at a medium and high load point when all
microservices run on older servers. Fig. 2(a) shows a subset
of microservices with high tail latency increases. When com-
paring the identified microservices to the exhaustive results in
Fig. 2(b), the same non-critical microservices are revealed.

Evaluating the run-time phase. We evaluate the two
scheduling policies that EcoScale identifies, NoScale and
NewMin. For each policy, we evaluate EcoScale’s ability to
maintain tail latency under the SLO, despite run-time load fluc-
tuations. As Fig. 3 shows, “AllNew”, where all microservices
are placed on newer servers, has the best performance meeting
the SLO at all times and “AllOld” has the worst performance
violating the SLO ∼67% of the time. NoScale at high load
violates the SLO 7.7% of the time, while MinNew violates
2.56% of the time. This result allows for an offline selection
between the two policies based on expected or predicted run-
time carbon intensity and load conditions.

Carbon savings. For a server scheduling and scaling policy,

3

we calculate the generated emissions for each time step.
Fig. 3(d) compares the emissions when running the AllNew,
AllOld, NoScale, and MinNew configurations. When summing
the emissions over the day, compared to AllNew, NewMin
achieves a 67.3% carbon saving. We repeat the same calcu-
lations using the Wikipedia trace, omitting the full results for
brevity, to find that NewMin achieves a 72% emissions saving.

REFERENCES

[1] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard Com-
puting: Repurposing Discarded Smartphones to Minimize Carbon,” in
ASPLOS, 2023.

[2] J. Lyu, J. Wang, K. Frost, C. Zhang, C. Irvene, E. Choukse, R. Fonseca,
R. Bianchini, F. Kazhamiaka, and D. S. Berger, “Myths and Miscon-
ceptions Around Reducing Carbon Embedded in Cloud Platforms,” in
HotCarbon Workshop, 2023.

[3] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks,
and C.-J. Wu, “ACT: designing sustainable computer systems with an
architectural carbon modeling tool,” in ISCA, 2022.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
Second edition,” Synthesis Lectures on Computer Architecture, 2013.

[5] J. Wang, U. Gupta, and A. Sriraman, “Peeling Back the Carbon Curtain:
Carbon Optimization Challenges in Cloud Computing,” in HotCarbon
Workshop, 2023.

[6] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned Threading for
OLDI Microservices,” in OSDI, 2018.

[7] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems,” in ASPLOS, 2019.

[8] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: Ml-
based and qos-aware resource management for cloud microservices,” in
ASPLOS, 2021.

[9] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“{FIRM}: An intelligent fine-grained resource management framework
for {SLO-Oriented} microservices,” in OSDI, 2020.

[10] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei, D. Brooks,
and C.-J. Wu, “Chasing Carbon: The Elusive Environmental Footprint
of Computing,” in ISCA, 2021.

[11] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in ISCA, 2014.

[12] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, 2009.

[13] “Electricity Maps.” [Online]. Available: https://
www.electricitymaps.com/

[14] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
memory power estimation and capping,” in ISLPED, 2010.

https://www.electricitymaps.com/
https://www.electricitymaps.com/

	Motivation
	Key Insights and Contributions
	EcoScale
	Key Results
	References

